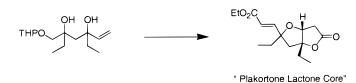
Efficient Palladium(II)-Mediated Construction of Functionalized Plakortone Cores

Gregory C. Paddon-Jones, Natasha L. Hungerford, Patricia Hayes, and William Kitching*


Department of Chemistry, The University of Queensland, Brisbane, Queensland, Australia 4072

kitching@chemistry.uq.edu.au

Received September 16, 1999

ORGANIC LETTERS 1999 Vol. 1, No. 12 1905–1907

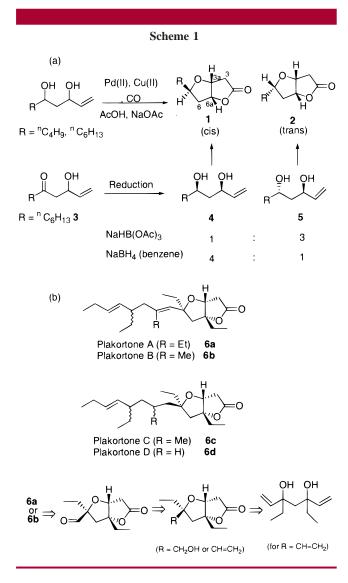
Appropriate enediols experience a one-pot palladium(II)-mediated hydroxycyclization–carbonylation–lactonization sequence to provide sidechain-functionalized 2,6-dioxabicyclo[3.3.0]octan-3-ones, the core structures of the plakortones, a novel class of activators of cardiac SR-Ca²⁺-pumping ATPase, from the sponge *Plakortis halichondrioides*.

Recently we reported efficient syntheses of the bicyclic lactones 1 and 2 in both racemic and enantiomeric forms and confirmed their presence in the lactone-rich Hagen's glands of certain species of parasitic wasps.¹ Our approach to 1 and 2 utilized a palladium (II)-catalyzed hydroxycyclization-carbonylation-lactonization sequence in a "onepot" conversion of appropriate enediols (Scheme 1a). Previous stereochemical assignments for 1 and $2^{1,2}$ have now been confirmed by directed syntheses of either the cis or trans lactones from enediols of appropriate relative stereochemistry. Kinetic aldol product 3, on reduction with NaBH₄ in benzene, afforded predominantly syn-1,3 diol 4 whereas use of NaBH(OAc)₃ in benzene or HOAc-CH₃CN (-40 °C)³ provided mainly anti-diol 5 on the basis of ¹³C chemical shifts⁴ of the acetonide CH₃ groups (DEPT spectra). (Acetonide of 4 showed CH₃ shifts at δ 19.7 and 30.1 and of 5 at 25.3 and 24.6 ppm.) Diol regeneration and Pd(II) cyclization cleanly afforded the lactones **1** and **2** ($R = {}^{n}C_{6}H_{13}$) from *syn-* and *anti*-diols respectively, in agreement with earlier conclusions^{1,2} (Scheme 1a). The cyclizations now described proceeded in good yields ($\approx 80\%$, see Supporting Information), and when diastereomeric mixtures of enediols were employed, this was reflected in the ratio of isomeric lactones.

Because this bicyclic lactone system occurs in other natural systems,⁵ we now describe further developments of this sequence⁶ and in particular apply it for acquisition of systems capable of side-chain elongation to the plakortones **6a**–**d** (Scheme 1b), recently isolated from the sponge *Plakortis halichondrioides*.⁷ The plakortones are micromolar activators of Ca²⁺ pumping in cardiac muscle sarcoplasmic reticulum (SR) and are relevant to correction of relaxation abnormalities.

⁽¹⁾ Paddon-Jones, G. C.; Moore, C. J.; Brecknell, D. J.; König, W. A.; Kitching, W. *Tetrahedron Lett.* **1997**, *38*, 3479.

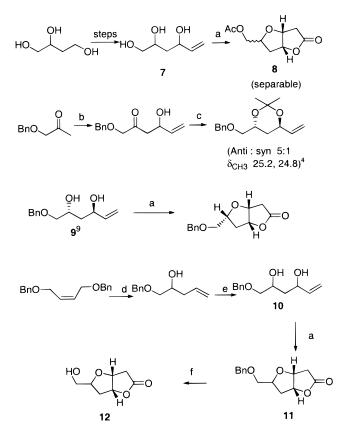
⁽²⁾ Paddon-Jones, G. C. Ph.D. Thesis, The University of Queensland, November, 1998.


⁽³⁾ Evans, D. A.; Chapman, K. T. *Tetrahedron Lett.* **1986**, *27*, 5939.
(4) Rychnovsky, S. D.; Skalitzky, D. J. *Tetrahedron Lett*, **1990**, *31*, 945.

⁽⁵⁾ See, for example: Fang, X. P.; Anderson, J. E.; Chang, C. J.; Fanwick,

P. E.; McLaughlin, J. L. J. Chem. Soc., Perkin Trans. 1 1990, 1655, Fang, X. P.; Anderson, J. E.; Chang, C. J.; McLaughlin, J. L. J. Nat. Prod. 1991, 54, 1034.

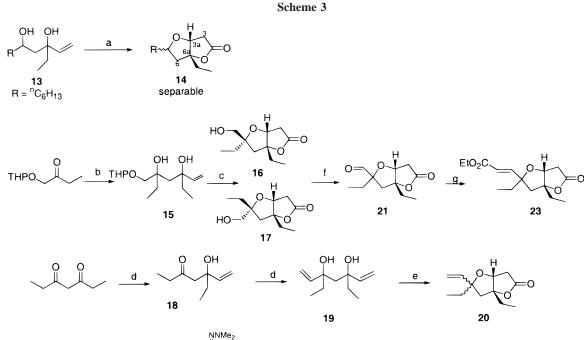
⁽⁶⁾ For a palladium(II)-based route to (-)goniofufurone,² see: Gracza, T.; Jäger, V. *Synlett* **1992**, 191.


⁽⁷⁾ Patil, A. D.; Freyer, A. J.; Bean, M. F.; Carte, B. K.; Westley, J. W.; Johnson, R. K. *Tetrahedron* **1996**, *52*, 377.

Our approach to the plakortone system⁷ was based on proximate (side chain) double bond disconnection for either plakortone A or B, **6a** or **6b**. Consequently, efficient access to the plakortones was dependent on the ability of the Pd(II)-mediated process to deliver tertiary centers in the presence of the additional functionality necessary for chain extension (Scheme 1b). Introduction of the hydroxymethyl group at C-5 would require the cyclization to proceed with a 1,2,4-triol arrangement, and use of unprotected triol **7** yielded acetate **8** as the isolated product. For provision of a suitably protected lactone derivative, benzyl-protected triol systems **9** and **10** were obtained as shown below (Scheme 2). These were successfully cyclized under the normal conditions to **11** and finally deprotected to yield desired hydroxy lactone **12**.⁸

With respect to ethyl group introduction, *tert*-allylic alcohol **13** (as a diastereomeric mixture) was transformed to lactone mixture **14** which was separated (HPLC), and the

Scheme 2


a. Pd(II), Cu(II), CO, AcOH, NaOAc. b. (i) LDA, (ii) Acrolein. c. (i) NaBH(OAc)₃ (C₆H₆), (ii) PPTS,dimethoxypropane. d. (i) O₃, CH₂Cl₂ (ii) $\checkmark MgBr$, H₃O⁺. e. (i) O₃, CH₂Cl₂ (ii) $\checkmark MgBr$, H₃O⁺.f. H₂/Pd, MeOH.

relative stereochemistry was assigned by NMR methods. The absence of a signal for H6a was notable, with a prominent ion for $(M - C_6H_{13})$ in the GC-MS, and spectral comparisons indicated that the introduction of the ethyl group at C-6a had minimal impact on ring geometries² (Scheme 3).

Formation of the actual plakortone core with ethyl attachment at both C-6a and C-5 can be envisaged by cyclization of the protected triol **15**, and this delivered the readily separated lactones **16** and **17**. Their ¹H NMR spectra were remarkably similar, and this is reflected in the calculated geometries and observed and calculated coupling constants.² NOE-based relative stereochemistry, and comparisons with the data for plakortone D, indicate that *cis*-isomer **16** probably corresponds to the plakortone structure.⁷

An alternative cyclization precursor, **19**, was accessible in principle by double addition of vinylmagnesium bromide to heptane-3,5-dione (Scheme 3), and ozonolysis of **20** would then provide the aldehyde for planned Wittig extension. Despite the potential for side reactions, the simplicity of this process was attractive, and a two-step procedure via **18** was developed for the provision of diol **19** which was immediately cyclized. Flash chromatography provided an isomer of **20**, and this procedure is being optimized.

⁽⁸⁾ Hydroxylactone **12** was efficiently oxidized by Dess–Martin periodinane to the corresponding aldehyde (δ_{CHO} 9.6, d, 1.4 Hz), but Swern conditions, as employed in the acquisition of **21** (Scheme 3), are a better practical approach for these systems.

a.Pd(II), Cu(II), CO/AcOH, NaOAc. b. (i) $\bigvee_{L_i}^{NNMe_2}$ (ii) H_3O^+ (iii) O_3 , CH_2CI_2 (iv) HMPA, \swarrow_{MgBr} c.(i) Pd(II), etc (ii) isolate(iii) PPTS, MeOH(iv) separate (SiO₂). d. (i) \swarrow_{MgBr} (ii) H_3O^+ . e. Pd(II), etc. f. (i) Swern oxidation (ii) Rapid chromatography (SiO₂, EtOAc). g. Ph_3P=CHCO_2Et, **22**, CH_2CI₂, Heat.

With respect to chain extension, aldehyde **21** (δ_{CHO} 9.76, br s m/z 183, M⁺ – CHO) was treated with a slight excess of stabilized ylide **22** and afforded enoate **23** as an E–Z (12:1) mixture, suggesting that this general approach would be applicable to side-chain attachment necessary for acquisition of the plakortones.⁹ A full report of this work will appear at a later date.

(9) Recently the synthesis of a lactone analogous to **16** but with an ⁿbutyl side chain in place of the hydroxymethyl group was reported. Bittner, C.; Burgo, A.; Murphy, P. J.; Sung, C. H.; Thornhill, A. J. *Tetrahedron Lett.* **1999**, *40*, 3455.

Acknowledgment. The authors are grateful to the Australian Research Council for financial support.

Supporting Information Available: Illustrative procedure for Pd(II)-mediated hydroxycyclization—carbonylation—lactonization. Characterization data including ¹H and ¹³C NMR data for compounds **8**, **11**, **12**, **14**, **16**, **17**, **20**, and **23**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL991055C